$\qquad$

## Water Conservation and Protection Pathway

## Water Background Worksheet

Fill in the following information as a class, in groups, or assign questions to individual students.

| Stormwater | Drinking Water \& Wastewater |
| :---: | :---: |
| Name of the watershed ${ }^{1}$ your school is located in: | Name of your local drinking water provider: <br> (Find this info on school's water bill-Ask school or district admin) |
| Describe the location of the nearest storm drain to your school: | Name the source(s) of your school's drinking water: |
| Name the creek or waterway the nearest storm drain empties into: | Name \& locate your local wastewater ${ }^{3}$ treatment facility. <br> Note: The water in the storm drains runs to this wastewater treatment plant. |
| Is recycled water ${ }^{2}$ used at your school? If so, how? | Name the body of water (river, bay, ocean) that your wastewater treatment facility discharges cleaned water into. |
| Activity: Create a map or diagram of where the storm drain water flows from your school to your local creek or waterway and to the San Francisco Bay. | Activity: Create a map or diagram showing where the school's drinking water comes from and how the water flows to the school. Then map how the water (now wastewater) travels once it goes down the drain. |
| ${ }^{1}$ Watershed: "The area of land that includes a particular river or lake and all the rivers, <br> ${ }^{2}$ Recycled Water: "Reusing treated wastewater for beneficial purposes such as agricult groundwater basin." (US Environmental Protection Agency) <br> 3Wastewater: "The used water and solids from a community that flow to a treatment p the wastewater that enters a [treatment facility]." (City of San Mateo - Public Works) | reams, etc. that flow into it." (Merriam-Webster online dictionary) <br> ral and landscape irrigation, industrial processes, toilet flushing, and replenishing a <br> ant. Storm water, surface water, and groundwater infiltration also may be included in |

## Baseline Assessment

Use the assessment sheet below to evaluate the current water usage in the classroom, hallway, and nearest bathroom as well as the school's landscaping and athletic fields. Equipment needed for class/hallway/bathroom evaluation (could get from science lab): a quart-size or $\mathbf{3 2}$ oz. measuring cup and a stop watch.

## Please Note: If your students decide to assess more than one classroom/bathroom, complete the respective portion of one of these forms for each room.

After the class has completed the Water Worksheet and this baseline assessment, proceed to Step 2 to develop an Action Plan report.

|  | How many drinking fountains are in the hallway closest to the classroom? Which classroom or bathroom are they closest to? |  | \# fountains___ Location |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2) | Are any of the drinking fountains leaking onto the floor, or continue to run water when they are not being used? Which ones? |  | - Y Yes $\boldsymbol{\square}$ ( ${ }^{\text {a }}$ | Which? |  |  |
| 3) | Are there any water stations that are designed for people to fill up a water bottle? Where? |  | $\square$ Yes $\square \square$ | Where? |  |  |
| 4) | Are students allowed to carry water bottles with them around school and in the classroom? |  | $\square$ Yes $\boldsymbol{\square}$ - No |  |  |  |
| 5) | Where is the nearest bathroom located? |  |  |  |  |  |
| 6) | Are there signs in the bathroom about saving water and/or how to wash hands using less water? |  | ㅁ Yes ㅁ No |  |  |  |
| 7) | Bathroom Faucet Inventory: Type, Aerator <br> Check which type of faucet each is: motion sensor (automatic), hand-operated (manual), or press/push (metered) <br> Does it have an aerator? Check Yes or No. <br> An aerator is a round metal piece that screws into the end of the faucet and reduces water Flow Rate. If you are unsure, with permission of your teacher or facilities staff, try unscrewing the tip of the faucet. If it comes off, that is the aerator. | Type of faucet? <br> Faucet \#1: $\qquad$ Automatic $\qquad$ Manual $\qquad$ Metered |  | Aerator? <br> - Yes <br> - No |  |  |
|  |  | Faucet \#2: $\qquad$ Automatic $\qquad$ Manual $\qquad$ Metered |  | - Yes $\square^{\square}$ No |  |  |
|  |  | Faucet \#3: $\qquad$ Automatic $\qquad$ Manual $\qquad$ Metered |  | - Yes - $\square^{\text {a }}$ |  |  |
|  |  | Faucet \#4:___ Automatic___ Manual ___ Metered |  | - Yes $\boldsymbol{\square}$ |  |  |
|  |  | Faucet \#5:___Automatic ___ Manual ___ Metered |  | - Y Yes $\boldsymbol{\square}$ No |  |  |
| 8) | Bathroom Faucet Assessment: Fill Time, tested Flow Rate <br> Measure and record how many seconds it takes each faucet to fill up your quart or 32 oz . bucket. This is known as the Fill Time. <br> Use the equation below to calculate the Flow Rate of each faucet. Refer to the Fill Times. <br> Tested Flow Rate $=0.25$ gallons $\div$ (Fill Time $\div 60$ seconds) $=$ gallons per minute, or "GPM" Note: 1 quart and 32 oz. are both the same amount of water as 0.25 gallons. <br> Is the tested flow rate higher than 0.5 gpm ? Check Yes or No. If yes, it is time to replace the aerator with one that is labeled 0.5 gpm , the best available! | Fill Time? <br> Faucet \#1: $\qquad$ seconds | Tested Flow Rate? | Tested Flow Rate > 0.5 gpm ?Yes No |  |  |
|  |  | Faucet \#2:___ seconds | gpm | $\square$ Yes | $\square$ | No |
|  |  | Faucet \#3:___ seconds | gpm | $\square$ Yes | $\square$ | No |
|  |  | Faucet \#4:___ seconds | _gpm | - Yes | $\square$ | No |
|  |  | Faucet \#5:___ seconds | gpm | - Yes | $\square$ | No |
| 9) If the faucets are metered, do any of them stay on for more than 15 seconds when you push it down all the way? Which ones? |  |  |  |  |  |  |
| 10) Are any faucets dripping when they are turned off? Which ones? |  |  |  |  |  |  |

11) Toilet Inventory: Type, Valve Brand

Check the type of toilet:
motion sensor (automatic), hand lever (manual), push button or green handle with two options (dual flush)

Record the brand name on top of the flush valve. If there is no name, write N/A.
The flush valve is the clunky metal piece that connects the plumbing in the wall to the toilet. It is helpful to name the brand of the toilet for the facility staff just in case a valve needs to be replaced.
12) Toilet Assessment: Flush Time, tested GPF

Measure and record how many seconds it takes for the toilet to flush. This is the Flush Time Start counting when you see the water start moving. Stop counting when the water finishes flowing into the drain, just before the bowl begins to fill up again.

Use the equation below to calculate the GPF of each toilet. Refer to the Flush Times.
Tested Gallons per Flush $=($ Flush Time -1$) \div 2=$ "GPF"
Is the tested gallons per flush higher than 2.0 GPF? Check Yes or No. If yes, it is time to replace the flush valve with one that is labeled 1.28 GPF or less!
13) Urinal Inventory: Type, Valve Brand

Check the type of urinal: motion sensor (automatic), or hand lever (manual)
Record the brand name on top of the flush valve. If there is no name, write N/A.
The flush valve is the clunky metal piece that connects the plumbing in the wall to the urinal. It is helpful to name the brand of the urinal for the facility staff in case a part needs to be replaced.

## 14) Urinal Assessment: Flush Time, tested GPF

Measure and record how many seconds it takes for the urinal to flush. Start counting when you see the water start moving. Stop counting when the water finishes flowing into the drain, just before the bowl begins to fill up again. This is the Flush Time.

Use the equation below to calculate the GPF of each urinal. Refer to the Flush Times.
Tested Gallons per Flush $=($ Flush Time -1$) \div 2=$ "GPF"
Is the tested gallons per flush higher than 1.0 GPF? Check Yes or No. If yes, it is time to replace the flush valve with one that is labeled 0.5 GPF or less!

| Type of toilet? |  | Valve Brand? |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Toilet \#2: ___ Automatic __ Manual ___ Dual Flush |  |  |  |  |
| Toilet \#3:__ Automatic ___ Manual ___ Dual Flush |  |  |  |  |
| Toilet \#4:___ Automatic ___ Manual ___ Dual Flush |  |  |  |  |
| Toilet \#5:___ Automatic ___ Manual ___ Dual Flush |  |  |  |  |
| Toilet \#6:___ Automatic ___ Manual ___ Dual Flush |  |  |  |  |
| Flush Time? <br> Toilet \#1: $\qquad$ seconds | Tested Gallons per Flush? $\qquad$ GPF | Gallons per Flush > 2.0 GPF? <br> Yes <br> No |  |  |
| Toilet \#2:__ seconds GPF $\quad$ ¢ Yes $\square$ No |  |  |  |  |
| Toilet \#3:__ seconds $\quad$ GPF $\quad \square$ Yes $\square$ No |  |  |  |  |
| Toilet \#4:_ seconds $\quad$ GPF $\quad \square \quad \square \quad$ Yes $\square$ No |  |  |  |  |
| Toilet \#5:__ seconds $\quad$ GPF $\quad \square \quad \square \quad$ Yes $\square$ No |  |  |  |  |
| Toilet \#6:___ seconds GPF $\quad$ ■ Yes $\square$ No |  |  |  |  |
| Type of Urinal?  <br> Urinal \#1:___ Automatic___ Manual Valve Brand? |  |  |  |  |
| Urinal \#2: ___ Automatic ___ Manual |  |  |  |  |
| Urinal \#3:___ Automatic___ Manual |  |  |  |  |
| Urinal \#4:___ Automatic ___ Manual |  |  |  |  |
| Flush Time? <br> Urinal \#1: $\qquad$ seconds | Tested Gallons per Flush? $\qquad$ GPF | Gallons per Flush > 2.0 GPF? <br> - Yes No |  |  |
| Urinal \#2:___ seconds $\quad$ _ GPF $\quad$ Yes $\square$ No |  |  |  |  |
| Urinal \#3: $\ldots$ seconds $\quad$ ¢ GPF $\quad \square$ Yes $\square$ No |  |  |  |  |
| Urinal \#4:__ seconds $\quad$ GPF $\quad$ Y Yes $\square$ No |  |  |  |  |


| 15) Classroom Faucet Inventory: Type, Aerator <br> Check which type of faucet each is: <br> motion sensor (automatic), hand-operated (manual), or press/push (metered) | Type of Faucet? |  |  | Aerator? |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Does it have an aerator? Check Yes or No. <br> An aerator is a round metal piece that screws into the end of the faucet and reduces water Flow Rate. | Faucet \#2:__ Automatic | Manual | Metered | $\square$ | Yes | $\square$ | No |
|  | Faucet \#3: ___ Automatic | Manual | Metered | - | Yes | $\square$ | No |

Please note: If your classroom is a science lab, do not inventory or assess the faucets that have the green caps or turret spouts. These are intentionally set at a specific pressure and flow rate.

## 16) Classroom Faucet Assessment: Fill Time, tested Flow Rate

Measure and record how many seconds it takes each faucet to fill up your quart or 32 oz. bucket. This is known as the Fill Time.

Use the equation below to calculate the Flow Rate of each faucet. Refer to the Fill Times.
Tested Flow Rate $=0.25$ gallons $\div$ (Fill Time $\div 60$ seconds) $=$ gallons per minute, or "GPM" Note: 1 quart and 32 oz. are both the same amount of water as 0.25 gallons.

Is the tested flow rate higher than 0.5 gpm ? Check Yes or No.
If yes, it is time to replace the aerator with one that is labeled 0.5 gpm , the best available!

| Fill Time? <br> Faucet \#1: $\qquad$ seconds | Tested Flow Rate? <br> gpm | Flow Rate > 0.5 gpm ? |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\square$ | Yes | $\square$ | No |
| Faucet \#2:___ seconds | gpm | 口 | Yes | $\square$ | No |
| Faucet \#3: ___ seconds | gpm | $\square$ | Yes | $\square$ | No |
| ed sinks, toilets and urinals? | $\begin{array}{llll} \hline \boldsymbol{\square} & \text { Yes } & \boldsymbol{\square} & \text { No } \\ \boldsymbol{\square} & \text { Yes } & \boldsymbol{\square} & \text { No } \end{array}$ |  |  |  |  |

Collect Data for the Landscape. For assistance, contact your school's or school district's facility or operations manager/staff.
18) What kind of irrigation (watering system) does your campus use for the landscaping (non-sports fields)? Check all that apply.
__ sprinklers __ underground hoses (drip) __ mix of both __ by hand (ex. watering can or gardening hose) __ other (Please explain
_)
19) What kind of irrigation (watering system) does your campus use for the sports fields? Check all that apply.
__ sprinklers __ underground hoses (drip) __ mix of both __ by hand (ex. watering can or gardening hose) ___ other (Please explain ___ _ _ _ _ _ _ _
20) During and/or after the landscape and sports fields have been watered, are there signs that they are being overwatered or that water is being wasted? Check all that apply. __ patches of soggy ground or mud __ wilted grass, plants, or trees __ water spraying onto solid surfaces like the sidewalk, parking lot, etc.
__ sprinklers that mist __ sprinklers that spray water high in the air $\qquad$ dry patches
Please indicate, in the Notes section below, where you observe any of these phenomena on campus.
21) Of all of the landscaping (non-sports fields) on campus, about what percentage is lawn/grass? $\qquad$ _ percent
Many water agencies offer reimbursement for conversion of lawn to drought-tolerant landscaping, which can require up to $3 x$ less water than lawn.
22) Does your school have rain gutters on the edge of the roof? If yes, where do they drain to? For example...onto the sidewalk, into the grass, into a rain barrel, etc.
23) At your school, is rainwater captured in a rain barrel or cistern or rain garden? Where is it?
24) During the rainy season, have you seen any signs of poor drainage in the grass or landscape areas, such as puddles, mini streams of water and erosion? If yes, where?
25) Is there a way for teachers and students to report signs of poor drainage, overwatering, and malfunctioning equipment?

Is there a way for them to know whether it has been taken care of by facility staff?

| ? Yes $\boldsymbol{\square}$ No | Where? |
| :--- | :--- | :--- |
| $\boldsymbol{\square}$ Yes $\boldsymbol{\square}$ No | Where? |
| प Yes $\boldsymbol{\square}$ No | Where? |

Record your observations from question 20 here.

Write down any additional notes or comments below:

